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We present two finite difference methods for numerical solution of a system of boundary 
layer equations for a nonsteady flow of a viscous incompressible fluid. One of these 

methods is explicit, while the other is implicit and we find, that, in order to obtain an 
approximate solution by the implicit method we must also solve a linear algebraic sys- 
tem. It is shown that while the explicit difference method is convergent when some 

constraints are imposed on the relations connecting the steps in spatial and temporal 

coordinates, the implicit method is convergent without the above constraints. Conver- 

gence of these difference methods is proved under the assumption of existence of a 

smooth solution of a system of boundary layer equations (see PI). 

1, Statement of the problem, Existence of a smooth solution of the system 
of boundary layer equations for a plane nonsteady flow of a viscous incompressible fluid 

U f + UU, + UUIJ = - px + VUyy, u, + 1?!, = 0 V.1) 

in the region D { 0 < t < t,, 0 < z < q,, 0 < y < 00 > with the conditions 

tL I[=” = %I (5, !/>7 11 I:,_O - 0, 2’ Ii,=” = 210 (t7 47 u Is=0 = U] (1, 1/) (1.2) 

lini u (t, 5, y) = Ii (t, 5) (I.31 
!/-Kc 

was proved in [I] under the assumption that either co or SC, are not greater than some 

constants depending on the parameters of the problem (1.1) to (1.3) and under the usual 
assumption of the smoothness and compatibility of the functions entering the conditions 

(1.2) and (1.3) . By the Bernoulli’s law we have 

- px = Ii, + uu, 

Solution of the problem (1.1) to (1. 3) is, in [l], reduced by the change of variables 

7 = 6 , 5 = X and q = tl ( t , X , y) and introduction of a new unknown function 
w=u,, to solution of Equation 

TW?ZU 
nil 

- W, - qwe + pJioli = 0 (W 

in the region CJ { 0 < T < lo, 0 < E < x0, 0 < q < U (z, E)} with the follow- 
ing conditions 

w 17+ = uoi/ - *(‘a (L ?1)7 1c I_ ;=” = Ul!/ = Wl (x7 q>, PC 1 - 0 (1.5) 
n=U(t,E) - 

92 
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Y WW_o - px - VOW = 0 for Tj = 0 CW 

Function U entering the solution of (1.1) to (1.3) can be obtained from 
u @7,x, :,) 

ds 
?J= 

s UJ (1. 5, 8) P*? 
0 

Below we shall give two finite difference methods for numerical solution of the prob- 
lem (1.4) to (1.6). Obviously, approximate values can be easily obtained for U using 

approximate values of w together with the relation of the type of (1.7) the right-hand 
side of which defines the inverse function of u. These methods are given in @]*. 
Convergence of approximations obtained by the method of straights for the solutions of 
steady and nonsteady Prandtl system can be proved in the analogous manner. 

We shall assume & and X, finite, without loss of generality. 

2, Explfcft finite df ffsrcncc method, Let a net whose nodes are given 

by the intersections of planes _c = mh, E = la and q = ko (m, I, k = 0, I, 2 ,...) 
where hr 0 and B > 0 are some constants, be given in the 7 , 5 , q -space . We 
shall call the nodal points 

(m,h, Lao, k&t (m,k (II - $1 g, kr) 

(m,% &IT, (k, - 1) a>, (“$9 &, (k, + 1) 0) 

the neighboring points of the node ((m 1 + 1) h , i?,ll t k,CJ) . Also, we shall denote 
the set of points belonging to 62 together with its boundaries by a’ and we shall call the 
node belonging to 0’ * Internal if all its neighboring points belong to fl ‘. The remain- 

ing nodes belonging to R ’ shall be called boundary nodes, 
The value of the function 4 at the node (R@, , .8 Q‘ t ?TCr) will be denoted by fmrk 

and we shall construct a finite difference equation approximating (1.4) for the function 
U? 

(w?dk + Mi3) 
%?r, kil - 2@mtk f Wml, k-l wm+l, Sk - %rdk - _.-- 

& h - 

_ ks ~r~zlh-‘- wm, 1-L k + Pxmlh Wmlk - wmI. k-l 7 = 
6 

0 6 (2.1) 
at each internal point of fi ‘with coordinates (( G’Z + 1) h, R U , kU) . Here M is a 
positive constant and M > max 1pX 1 . 

We assume for all the boundary nodes of fi’ lying on the planes 7= 0 , c= 0 and 
?J= 0 that at these nodes 

(24 
while at the remaining boundary nodes of n’ denoting them by I’,, we assume that 

Wmrk = 0 (2.4) 
Equations (2.2) to (2.4) approximate the boundary conditions (1. 5) and (1.6) . It is 

clear that when ~~~~ =/= 0 at alI boundary nodes of 0 ’ lying on the plane q = 0 , 
~~~~ the values w,+l,rk (with fixed m 1 0) are uniquely determined by the system of 
equations (2.1) to (2.4) in terms of zt! at 7 = &VJ. 

To show that the values of w,rk, defined by the difference equations (2.1) to (2.4) 
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at the boundary nodes of 2’ converge to the solution of the problem (1. 4) to (1. 6) as 

h-6 and 0-+ 0, we shall have to prove some auxilliary assumptions. Everywhere in 

the following Mt will denote positive constants defined by the parameters of the prob- 

lem (1, 4) to (1.6) and independent of h and U , and we shall also use the following 

Lemma 1. Let function w be given at the nodes of Q’ and let it satisfy the 

difference equations (2.1) to (2.4) and let the functions F and iii be such, that 

F,<W\<F, (2.5) 

at nodes of fl’, for which T = m h, when 1 = 0 and on rha, when 7 = (m -t 1) h. 
Here m 20 is a fixed integer. 

We shall assume that L,+r (F) 2 0 and Lmtl (F,) < 0 for all k and i cor- 

responding to the internal nodes of n lying on the plane 7 = (m + 1) h , that 

&,I (J’) > 0 and k,,,t (Ft) < 0, for 4 corresponding to the boundary nodes of 

h2’ of the type ((m+ 1) h. 40, 0) and also that w, +,O. 
Then, the inequalities (2.52 will hold at all nodes of 0 for which 7 = (m + 1) h, 

provided that h/3 < 1/2Va where a' = n-tax F12 when T =m h. 
Proof . We shall first prove that 2 = W- F~o when T=(m+l)h. By the 

previous assumption 2 2 0 when 7 = mh , on I’,, and for 5 = 0 when ‘I = (m+ l)h. 

By the condition (2.3) and the inequality &,,+t (F) > 0 

from which it follows that 

V*?BIO 
Zmt1.r1- ZnHl. lo 

0 <') 

‘mtl. lo >Z mtl, 11 

(2.6) 

(2.7) 

For the internal nodes of 0’ for which 7 = (m + 1) h we have Lnil (tu) - Lmil (F) < 0. 

This means that 
‘mll. Ik- ‘m/k 

-- h .-- 

=mlk - ‘m, Z-1 k Z 

-kC5 L +~rmlk 
mlk - ‘ml. k-l 

from which we obtain 
6 6 

< 0 

+ c 
v (WmJ2 4- nffs 

52 h - 3F h 
) 

Zml, k_l + khz,,,_, h’ (2.8) 

Since by the previous assumption zmik > 0, it follows from (2.8) that I,, tlh’ > 0 

at all internal nodes of fl’ provided that all the coefficients of z in the right-hand side 
. ~ 

of (2. 8) are nonnegative. Coefftctent of ~,r,~_t is obviously nonnegative since 

M> max lfil . Coefficient of Zmlk in (2.8) will be nonnegative if 

h 1 -- 
6” 

d 
2V (W,&’ j- 2M6 - p,,lk 6 i- k.3” 

(2.9) 

The latter obviously holds for sufficiently small Li since by the previous assumption 
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h/dQva”. ConsequentIy zl,l,Ilk , > 0 at all internal nodes of f2’ when 1 = 0 and 

on Go Hence, from (2, 7) it follows that =,n+l10 > 0 and, consequently, ir = W -.FzO 

at all nodes of 0’ forwhich r=(m+ljh. 
The inequality W- pl 20 is proved analogously . 
Lemma 2, At the nodes of 0’ for which 7 r To and at sufficiently small b 

and U, the estimates 

hold for the solution w of difference equations (%I) to (2.4) , Here b' and 6 are 
funcrions constructed in the proof of Lemma 2 of pl] I To is a constant also given in 

p]* function V, = M, (z -/- 1) (h + a), h (d < l/2 vb: and bla = max V2,. 
At the nodes of 0’ for which 5 5 so and when h and U are sufficiently small , 

the estimates 
V- u, < w < v, (2.11) 

hold forC the solution W of (2,l) to (2.4) . Here z/ and & are functions constructed 
in the proof of Lemma 3 of pf co is a constant defined in p] and 

3 = & (t 3 1) (h + fi), h / 8 < .1/2 YbZBI b,2 = max V,2 

Proof l We shall show that Lemma 1 can be applied to the functions F= t/‘- U 1 

and Fl = v1 provided that 7 2 To . It was shown in [l J during the proof of Lemma 

2, that 

and 

under the assumption that 7 2 7, and under the condition valid for w”” only, that 

vsw n-l< v,. Hence, provided that h and ff are sufficiently small, k$ is suffici- 

ently large (Ml depends on the magnitude of the derivatives of I/ in the vicinity of 

rl = U (r, E)), Z = (m + 1) h <to and the inequalities (2. 10) hold for 7 = mh, the 
following difference relations 

L m+x V --4>o, %?l,~v-%D0~ ~~,#w=YA &,,(V,)<O 

will be fulfilled. 
It should be noted that & > 0 in R’ and v> 0 everywhere in fl’ except at the sur- 

facepoints q= UC?, s). 
Inequalities (2.10) hold when 7 = 0 and, by (2.2) and according to the properties 

of v and & , when 5 = 0. If Ml is sufficiently large, then the inequality I/- ?.?I 2~ 
holds also on rllo by virtue of the smoothness of I/, the latter being equal to zero whea 
?J = u( 7, 5) . Since W = 0 on rh3, and vl > 0 , hence, obviously w zZ 4 on I’,,. 
Therefore, applying Lemma 1 consecutively to th: cases 772 = 0, 1, 2.. . . we obtain, 
that the inequalities (2, 10) hold at all nodes of 61 , for which 7 5 To . 

Inequalities (2,Il) for 5 s 5 o are proved analogously. 
Next we shall prove a theorem on convergence of solutions of difference equations 

(2.1) to (C&4), when h, CF -+ Q , 
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Theorem 1. Let W be solution of the problem (1.4) to (1.6) possessing bounded 
second derivatives in fl ’ and let W be the solution of difference equations (2.1) to 

(2.4). Then, for sufficiently small h and 0, we have 

1 w - U’ I< M, (h + 0) (2.12) 

in f12’, provided that either to ST0 and h/D2 e $ Vb 1”) or Xo 5 1 o and h/ 8 < 

< f vb/ . 
Pr 00 f , Let XmlR = w,rl; - Wmlh.. In accordance with the boundary conditions 

(1.5) and Equations (2.2) and (2.4), we have 

X,,, = 0, J&k = 0, X&k = 0 (h 3 6) On ‘ho 

Boundary condition (1.6) and smoothness of W imply that 

W 
vwTnfo 

mtl, II - wmtl, I0 

0 - Kwnffj - ~gmlOWrnlo = 0 @ + Q) 
Therefore, with (2.3) taken into account, we obtain 

X mtf. 11 - Xm-l-l. 10 W 
VW 

ml0 G -VOmrO Xmlo+ v 
- “rn+l lo 

m+l' 'I6 ' Xm10 = 0 (2.13) 

At the internal nodes of fi ’ we have, by virtue of the assumption of smoothness of 
W and by (1.4) W 

[v (wm,,)z+ Ma] mzv k+l 
-2wmlk+ wmZ. k-l Wm+l,Ik-Wmlk 

d 
- 

h - 

W 
- ka m’k 

- lYrn, I-1 k 

’ +&mlk 

“mlk - “ml,*k -1 
ci 

0 
= opl+ a) 

which, on subtraction from the corresponding difference equations (2. l), yield 

-2Xm,k+Xml k-l Xmtl ZkwXmlk 
’ - ’ h - 

X m/k --Xm l-l k X 
_kko 6 . , + PIntlk mlk-f-ml. k-l _+ 

W -2w 
+ Y(WmZk+ Wmd 

ml. kil mrk+ wml, k-l 

a" 
X - 0 (h + a) mlk ~_ 

Let us now introduce into (2.13) and (2.14) a new function 

Y = XmzkeM41so M, > 
maxIv,I+vmax(aW/arl(+l 

mlk v min Y (.t, 5, 0) 

where Ma= const > 0. Obviously 

y 0, Olk = Y 
mok = 0, Y mlk = 0 (h + a) on 1',, 

Equations (2.13) yield 

,-M45 
Y m+l,Il - 'm41. 10 

vwmIO a +~,Y*,*~O+~,Ym,, = O(h+a) 

e-M&a _ 1 W 

Al=vWmlo 6 ' 
Aa = v 

mt1. 11 - Wmt2, 20 

a - veml* 

and by virtue of the choice of Ma , we have 

for sufficiently small Q . 

(2.17) 

From (2.14) we find, that, for internal nodes of R’ with coordinates ((m+ l)h, 10, 

ka), we have 

(2.14) 

(2.15) 

(2.16) 
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2 [Y (wmJz + MaI (1 --e -Mq h 

+ ci2 y, 2 ‘k-1 + B,hY,l, k-1 + B,hY,,, f ho ch + ‘1 t 1. 

Obviously, the sum of all coefficients of Y in the first four terms of the right-hand 

side of (2.18) is equal to unity. Since 

hi a2 < 1/2vb1~, h /. cv < f/Zwb,z, M > max j pxj 

it can easily be confirmed that for sufficiently small CT all these coefficients are 

nonnegative, 

Let us now denote b P, the maximum of 1 Y 1 when T sin!%, Then, either 
F&l =P, or max IJ! with Ts(m + I}h ~sreachedwhen T=(FZ +l)h. Tfthe 

latter is found to be the internal node of 0’ then from (2.18) it follows that 

P m+l\<J'm ii; fiJd@, + fif,h (h + g) 

Ifmax/Yl h w en 7 = (T?? + 1) h is reached when q = 0 or on Ahab then from 
(2.15),(2,16) and (2.17) it follows that 

P m+ld M? @ i- Gl 
Obviously .PG = 0 . Let us consider the ordinap differential equation 

tisldz = M6s + M, (h -+ crj (2.19) 

Clearly, when ??@I,~ To . then P, does not exceed the solution of (2.17) with the 
initial condition s (0) = M7 { h + CT ) . Hence, when 7 2 To 

max I Ydh- 1 f [M, (h -f- ~1 -t- MS 0 + q I nf,t e”+ - M, (h + @T) i nf, 

This means that the inequality (2.12) holds and 1 w- W 1 J 0 as h, CPO , which 
proves the theorem , 

3. Implicit ffnite difference method. Consider, in the 7, 5, q-space, 
a net with nodes defined by the intersection of planes 
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(m,h, Z,h, k,h), (Cm, -I- I) II. ( I, - 1) h, k-, h) 

the neighboring nodes of the node ((ml +- 1) h, Z,h, k,h) 

As in the previous difference method, we shall call the node belonging to fi’internal 
if all its neighboring nodes belong to fl’ (i. e, to the closure of Q) . 
nodes of fl’ shall be called boundary nodes. 

The remaining 

We shall denote the value of f at the 

point (m h, , Ah, kh) by fmlh: and we shall construct for each internal node of fi’ with 
coordinates ((m + 1) h, A h, kh) a corresponding difference equation for W , approx- 
imating (1.4) 

zL’mti. Ik - wmlk 
-kh wmtl, Ik - wm+l, l-1. k - 

h h 

M = const > max 1 pr 1 

Equations at the boundary nodes 
(3-U 

WOlk = wo W, W, WnlOk = w1 (mh, kh), W,lk = 0 on t’h (3.2) 
correspond to the boundary conditions (1. 5) and r, denotes ihe nodes of 0 ’ outside 
the planes 7 = 0 , 5 = 0 and ?J = 0. Expression 

~TTllO 
wm+l, I1 - wfn+l, 10 

h - Pmnl0 - U~*IOWml~ = O (3.3) 
corresponds to the boundary condition (1.6) . 

Again, before proving the convergence of solutions of the difference system (3.1) to 

(3.3) to the solution of the problem (1.4) to (1.6) when h+o , we shall have to estab- 
lish some auxilliary propositions, First we shall show that the equations of the difference 
system (3.1) to (3.3) have unique solutions in WmS_I,lk under the assumption that all 
W,[k, are known and that m 2 0 is a fixed integer. This means that the difference 

equations (3.1) to (3.3) can be solved in successive steps in the ‘T-direction, i. e. for 
m=o,m=l, m=2, etc. 

Lemma 3. Let m 2 0 be fixed and w,ro # 0 for all A. Then, the system 
(3.1) to (3, 3) will have a unique solution with respect to Wm+l,/k9 provided that all 
values of W,lk, i. e. values of w at all nodes for which 7 = .n2 h, are known , 

Proof , Since (3.1) to (3.3) is, for fixed C7 , a linear algebraic system in 

w’,+~ Ih- it is sufficient to show that it can have only one solution. 
Asiume, that for some m , the system (3. 3) to (3. 3) has two solutions in w,+~, rk and 

let us denote their difference by Smfl, Ik. This difference satisfies Equations 

s m&l, Ok + 0, s --o mt1. Ik- on Fh, s mt1,11 - %,I, 20 = ” (3.4) 
At each internal node of 0’ for which T = (ni + 1) h, we have 

s 
m+lq lyk+l 

- 2s 
[Y(Wm[k)2f Mhj 

m+l, lli + ‘m+l, 1. k-l 

h2 
- 

s mcl, Zk 
S 

------_-_h 
‘rn, I., Zk - “m+l 

h h ’ 
Z-1 , k + Prmlk m+l. lk -‘fm+l. I. k-l = o (3.5) 
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If s m,l Ik + 0, then there exists a point, at which the modulus of SmS1 iL assumes 

its great-est: value. yJ (3. 4) t I &nfl,l,h. I should be reached at some internai node of 
2’ with roordinatrs ((m + 1)h, g1h2, klh). hlulriplying(3.5) by Srnfl,l,k we 

Obviously, all the terms cantained in the left-hand part of this equation should be 

nonpositive, while the term (S,+, l,k,)2/ h will be negative. This is impossible 

unless S,+l Ik z 0 , which compleies the proof. 
Let us now ‘introduce the notation 

Lemma 4. Let W given at the nodes of n’ , satisfy the difference equations 

(3.1) to (3.3) and let the functions @ and $1 be such, that 

(D<W\<@, (3.6) 
at the nodes of hz ’ for which T = GZ?2, and also when .8 = 0 and on rh , when 

Tfjm -t l)b. Here m 2 0 is B fixed number. 
Assume now that ar all internat nodes of fi’ for which 7 = (P2 + 1) h 

A m+z P-V > 0, ~m-#r) ;e 0 

at all boundary nodes of the plane q = 0 

bn+-l(@)>07 L+1 (@I) <O 

and let w,,,[,-, + 0 no matter what the value of 1 is. Then the inequalities (3.6) hoid 
also for T = ( m + 1) 72. 

Proof l We shall first sh0w that z= w - $ 2 0 when 7 = (m + 1) b. By the 

condition of the Lemma 2 2 0 when 7 = mh , and also when 5 = 0 and on &, r By 

f3.3) and the condition h,+,(@> x 0 , we have 

2 m&l. il - %?&+I. 10 
VZL’ n-do h 

’ <o 
from which it follows that 

Z m+1, ro> %M. 11 

F0r the internal nodes of R’ lying on the plane 7 = (ITZ + l> h, we have 

A rn+l(~o) - &+1 (a,) < ‘J 

which means, that far these nodes 

(3.7) 
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Z 
_ iv (Wmlk)? + IMh] m+l* (3.8) 

If z l assumes negative values, then the negative minimum of Zm+l,~k should 

be achirzitt some internal node of 0’ , since 22 0 when s = o and on rh , and 

the inequality (3.7) holds. All the terms of the left-hand side of (3.8) considered for 
the point at which the caallest negative value is assumed are nonnegative, and at least 
one of them is positive, which is impossible. Consequently, zm+l,lk > 0 everywhere 
at the nodes of fi’ , which was to be proved. In the analogous manner we show that 

W- $150 in fl’ when 7 = (m + 1)h. 

Lemma 5 . Lemma 2 holds for the solution w of difference equations (3.1) to 
(3,3), i. e. with h sufficiently small, inequalities (2.10) when ‘T 5; To and inequalities 

(2.11) when 5 5 so , hold. 
Proof of this Lemma is analogous to that of Lemma 2 . 

Now we shall prove the convergence of the difference system (3.1) to (3.3). Here 4 
will denote positive constants defined by the parameters of the problem (1. 4) to (1.6) 
and independent of h. 

Theorem 2 . Let w be the solution of (1.4) to (1.6) possessing bounded second 
derivatives in fl’ and let W be the solution of difference equations (3.1) to (3.3). 

Then, at the nodes of 0’ we have, for sufficiently small h, 

IW--wl\(&h (3.9) 

provided that either to 9 ‘To or x0 b 5 o where k and z. are positive constants 
defined in Lemma 2 . 

Proof. Let us denote W,,,zk - Wlnlk by X&k. According to (1. 5) and (3.2) we 

have X elk = 0, Xmok = 0, X&,$ = 0 (h) onlrh (3.10) 

Boundary condition (1.6) and assumption of the smoothness of w imply 

YW,IO 

Wm+1 11-- Wrnt1 IO 
‘h ’ - Pjcmlo -- vomzo WrnlO = O @) 

Hence, taking (3. 3) into account, we obtain (3.11) 

X m+1, 11 - G+1, 10 

V'",l 0 I1 +t- 

W 
UUmIO +y 

m+1, 11 - W?n+1, In 
h ) 

x gi,,o ==o (h) 

for all boundary nodes lying in the plane rl = 0 . For internal nodes of R’ we have, by 

(1.4) and the smoothness of W 

W 
m+lv I7 k+l 

-2w 
[v (wmlk)3+ Mh] 

m+1. 
- 

-e- hz 

Wm+l, zh’ - wmzk w 
- fih 

m+l. lk - 
w mt1, I-1, k 

- 
h h + 

which, together with (3. l), yield 
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X 
lw~~~~)2 f mj me1* t* k+l - 2-&n”+.,* Ik + *mt,, I, k-l *ma !k - Anlk 

j&Z 
- ‘h - 

X 
mt1, IL - *ml, l-l, k X 

- kh 
h 

+ Prmlk m+l, Ek -hxm+L 1, A-l + 

W 
+ 

w&I, k+l -zwm+,, lk+ wm+L I,k-I 

h= v (wml~ + w,,,) Xn~lli = ’ fh) (3.12) 

Let us now introduce into (3-10). (3. ll} and (3,12), a new function 

Y M,kh-.&mh 
mrtc = 4r&Ce G%>o* &>O) 

where & is defined In the proof of Theorem 1 and the constant Kz is 
Equations (3.11) yield 

defined below, 

Y mt1,l I 
-Y mtl,‘I 0 

“ml0 
e-Jfah + CIY,,l, [ 0 5 Gym,, = O (h) (3.13) 

h 
e-Mdh - 1 

c* I- ,-K*h 
( 

W 
Cl=vU?,& h ' - "onlo+ v 

rnil, I1 -%fc, IO 

‘h ’ 

For internal nodes of n’, (3.1‘2) give 

[Y (wmrk)2 + Mh] ,-“*h 
Y 

m+Lr ” Ir+’ 
- 2y,+1 Ik + ym+l 1 k-x 

&.’ ’ ’ I - 

_ e-&h L+,, ii- Ymtk _ kh %l+1, IP -hFn+l. l-1. P + 

W 

D2 = %’ (=mtk + wm,k) 
m-+X, I, k-tl- 2Wm;, Ik + W 

h" * 
mi1. 1. k-l e_&h 

1 - ,m 
D3- Pxmlk h + 1~ (~m,k)~ + Jlhl 

e”th - 2 ,_ ,-w 

hZ 

which can be written as 
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Assume that the modulus of Y assumes its greatest value at the point P whose coor- 

dinatesare ((m + l)h, ilh, klh). If P lieson rh , on the plane 7 0 or on 

5 = 0 , then from (3. 10) it follows that ( Ym,+l,l,,k, I <K&. If P lies on q ^- 0 then, 

by virtue of the choice of Ma it follows from (3.13) thar 1 Y,,+, I,,k, I .<h’,h for suffi- 

ciently small h , since IG-ICal > 1 if h is sufficiently small . 
If, on the other hand, p is an internal node of (2’ , then first four terms of the right- 

hand side of (3.15) considered at the point P are of the same sign coinciding with the 

sign of the fifth term. provided that 

(v (%l/# -i. Mh) e 
-M,h - pxmlkk + 2 [v ( z+,~,~)~ -+- Mk] (1 - +‘I’) r, 0 (3.16) 

Inequality (3. 16) will be fulfilled for sufficiently small h, since by the previous 

assumption ,Y > max Ipxl l 
Hence, at the point P 

(I& I - I&# I - 14 I) I Ym*+~,l,~,/ d h’& (3.17) 

Let us choose K;? large enough to fulfil the inequality 

Kz > v (max Vr + max W) max 
a2w 

I I 
-65 + mns 1 p, 1 M* -I- max v~?M~?Y 

Then, the coefficient of Ymltl It k in the left-hand side of the inequality (3.17) is 

positive and I Y m,+lr,,k, I< K&L bon’sequently, for sufficiently small h the inequality 

(3.9) holds for W- w, which completes the proof. 

4. Construction of approximate solution of the problem (1.1) 

to (1.3) . We can find approximate values of the function U ( t , X, y) defined 

by the system (1.1) to (1.3) , using the approximate representation of the inverse of 

U ( t , X, &) in terms of wm& with fixed t and X 

[dh] 

Y=E h 
k=O w (L z. kh) 

(4.~) 

which, together with (1.7). readily yields the result that in the region D when 

F& cc0 and when either &, 2 To or .zo < &,, 

Here K7 depends on go , function &,,lk 

1 u,,,[~ - u 1 < K,h. 
is defined by (4. 1) and W is the solution 

of difference equations (3.1) to (3. 3) . Estimates obtained for W,lk in Lemma 5 

should be taken here into account together with the estimates for w obtained in [l] in 

Lemmas 2 and 3 . Analogous statement is correct for solutions of the difference system 

(2.1) to (2, 4) . 
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